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Abstract

The multiple inverse method is a resampling technique that can separate stresses from heterogeneous fault-slip data. Numerous optimal stresses

are determined for each extracted subset of data, and the clusters of these stresses are thought to represent significant solutions. Hitherto, the

clusters have had to be visually recognized on stereonets. This study computerized the identification of the clusters by using the k-means clustering

technique. We tested the technique using artificial datasets with known solutions. As a result, it was found that the present method detected

objectively the correct solutions. In addition, the spread of each cluster was evaluated to indicate the confidence levels of the identified stresses

that were represented by the cluster centers.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress tensor inversion of fault-slip data (e.g. Angelier,

1979) has been applied to many areas in the world since the

early 1980s to understand paleostresses in the upper crust.

Several numerical techniques have been proposed for

separating stresses from heterogeneous fault-slip data

(Angelier, 1994; Nemcok and Lisle, 1995; Fry, 1999; Shan

et al., 2003, 2004; Yamaji, 2003a; Yamaji et al., 2006). The

multiple inverse method (Yamaji, 2000b) is one of them, and

has revealed stress history in active island arcs with a temporal

resolution of !1 m.y. (Yamaji, 2000a, 2003b; Yamaji et al.,

2003, 2005).

The multiple inverse method iteratively resamples kf-

element subsets (usually kfZ4, 5 or 6) from a set of fault-slip

data, and determines optimal stress tensors for the subsets. The

optimal solutions are represented by reduced stress tensors.

The number of subsets equals the binomial coefficient

Nf Ckf
ZNf !=kf !ðNfKkf Þ!, where Nf is the number of fault-slip

data. Significant stresses are indicated by clusters on

stereograms that show principal stress orientations and stress

ratios. The clusters have been recognized so far by visual
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inspection of the stereograms. Visual recognition is more or

less subjective, unless distinctive clusters are observed.

When a single cluster of reduced stress tensors appears, it is

possible to determine the cluster’s representative stress by

taking the component-wise average of the tensors and to

evaluate the spread of the reduced stress tensors about the

representative one (Yamaji et al., 2005). However, the purpose

of the multiple inverse method is to detect multiple stresses

from heterogeneous data. Given a heterogeneous dataset, the

method yields several clusters of reduced stress tensors. In this

case, the representative tensors must be determined for each of

the clusters.

The purpose of this study is to present a computerized

technique to recognize those clusters separately and to

determine the representative reduced stress tensors and the

spread of tensors. To this end, we employ a technique called

k-means clustering (MacQueen, 1967; Lloyd, 1982) for the

objective division of reduced stress tensors obtained by

the multiple inverse method into clusters. At the moment, the

number of clusters, k, has to be specified by the user.

Clustering was conducted in the parameter space defined by

Sato and Yamaji (2006) who reshaped that of Fry (1999). The

k-means clustering needs a well-defined distance between the

objects to be classified. The stress difference defined by Orife

and Lisle (2003) is a useful distance between reduced stress

tensors. The parameter space is suitable for our purpose

because the Euclidean distance between points in the parameter
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space equals the stress difference between the stresses that are

represented by the points.

The present technique was tested by artificial datasets. It

was shown that the resolution of the visual identification of

clusters was sometimes insufficient, and that the present

technique detected correct stresses from artificial data that

were generated with known stresses.
Fig. 1. Schematic picture showing the role of normalized distance. Closed

circle is plotted at the same Euclidean distance from the cluster centers (open

diamonds), but the point at the closed circle is more probably a member of the

large cluster than of the small one. This study uses the distance of a point from a

cluster center normalized by the size of the cluster.
2. Recognition of clusters of stress tensors

2.1. k-means clustering

The core of the present method is the application of k-means

clustering (MacQueen, 1967; Lloyd, 1982) to stress tensors.

Clustering is the process of organizing objects into groups. Any

two objects from a group should be similar in some way, while

those belonging to different groups should be dissimilar. The

k-means clustering explores the partition of objects that

minimizes the sum of squared distances between them and

cluster centers.

Our objects are the reduced stress tensors. The following

parameter space enables us to define the distance and cluster

center for the clustering of the tensors. The reduced stress

tensors have one-to-one correspondence with points on the

five-dimensional unit hypersphere (Sato and Yamaji, 2006).

The Euclidean distance in this five-dimensional parameter

space equals the stress difference between corresponding

reduced stress tensors (Sato and Yamaji, 2006). This

dissimilarity between the tensors ranges from zero to two

(Orife and Lisle, 2003). Therefore, we deal with points on the

hypersphere in the same light as unit vectors whose initial

points are fixed at the origin.

Let N be the number of points on the hypersphere and ðxðiÞ be
the point indicating the ith stress tensor, where iZ1, 2,.,N.

Our task is to automate the identification of clusters of those

points. Suppose that the points are divided into k clusters, and

that the cth cluster has Nc points. Therefore, we have

N Z
Xk

cZ1

Nc*

The cluster center is defined as follows. We deal with the

cluster center as the unit vector to indicate a reduced stress

tensor. Let ðuc be the center of cth cluster, and ðxðiÞc be the ith

vector in the cth cluster, where iZ1, 2,.,Nc. The center is

given by the equation

ðmc Z
1

v
ðxð1Þc C/C ðxðNcÞ

c

� �
(1)

where v is the normalizing factor, vZ ðxð1Þc C/C ðxðNcÞc

�� ��, and
has the role to put the end point of ðuc on the hypersphere.

The practical procedure of the k-means clustering technique

for stress tensors is as follows:

(1) Input the number of clusters k (kO1). Distribute the initial

cluster centers ðuc (cZ1, 2,.,k) randomly.
(2) Calculate the distance between each vector ðx and cluster

centers ðuc, and link the vectors to their nearest cluster

centers.

(3) Update the positions of centers using Eq. (1) with linked

vectors, ðxð1Þc ;.; ðxðNcÞ
c .

(4) Steps (2) and (3) are repeated until the linkages no longer

change.

To cope with various cluster sizes, the present study uses the

normalized distance of the vector ðx from the cth cluster center

Dw ðx; ðmc

� �
Z

ðxKðmcj j

sc
(2)

in step (2), instead of the distance ðxKðmcj j itself, where sc is a

normalizing factor representing spread of the cth cluster

s2c Z
1

NcK1

XNc

iZ1

ðxðiÞc Kðmc

�� ��2 (3)

where ðxðiÞc is the ith member of the cth cluster. Dw indicates the

deviation of a member from ðuc with respect to the size of the

cluster that is represented by sc. The deviation of a member in a

small cluster is evaluated to be greater than that of a member in

a large cluster, even if the Euclidean distances are the same

(Fig. 1).
2.2. Distribution of initial cluster centers

The results of k-means clustering vary, depending on the

initial positions of the cluster centers. It is, therefore, necessary

to evaluate and compare the results for determining the best

division for the given data. For this purpose, we make a

multivariate discriminant analysis. We use an extension of

Fisher’s (1936) linear discriminant for plural clusters. First, we

quantify the dispersion of members of each cluster by the

scatter matrix (Duda et al., 2001)

Sc Z
XNc

iZ1

ðxðiÞc Kðmc

� �
ðxðiÞc Kðmc

� �T
(4)



Fig. 2. (a) Variation of discrimination criterion J in 200 runs with different distributions of initial cluster centers for the reduced stress tensors shown in Fig. 3b.

Dashed line depicts the improvement of J. In this example, three clusters, F, G, and H, were identified. The principal orientations of centers of the clusters are plotted

in Fig. 4a. (b) Convergence in the clustering is shown by the stress difference D between the best distribution in the past trials and the find division for three clusters.
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The eigenvalues of this matrix indicate the extent of a

cluster. We have k clusters, so that

SW Z
Xk

cZ1

Sc Z
Xk

cZ1

XNc

iZ1

ðxðiÞc Kðmc

� �
ðxðiÞc Kðmc

� �T
(5)

is a representative spread of the entire clusters. On the other

hand, the symmetric matrix

SB Z
Xk

cZ1

Nc ðmðiÞ
c Kðmall

� �
ðmðiÞ
c Kðmall

� �T
(6)
denotes the dispersion of the cluster centers, where

ðmallZ
1
N

PN
iZ1 ðx

ðiÞ. The eigenvalues of SB indicate the dis-

persion of the centers. For this reason, SB is called the between-

cluster scatter matrix. In contrast, SW is called the within-

cluster scatter matrix (Duda et al., 2001).

We expect that each cluster should be concentrated after the

iteration, and that cluster centers are clearly separated from each

other. If there are overlapping clusters, they should be merged

into a larger cluster. The compactness is expressed by the

inverse of the within-cluster scatter matrix SK1
W , and the

separation of clusters is represented by SB. Therefore, the two



Fig. 3. Tangent-lineation diagrams (Twiss and Moores, 1992, p. 206) showing the artificial fault-slip datasets I (a) and II (c). Lower-hemisphere, equal-angle

projection. Dataset I recorded three Stress states A, B and C of which principal orientations are also indicated in (a). Solid, gray, and open arrows in (a) indicate faults

activated by the stress states A, B, and C, respectively. Open and solid arrows in (c) indicate faults activated by Stress states D and E, respectively. Paired

stereograms in (b) and (d) show the results of the multiple inverse method (version 4) (Yamaji, 2000b) applied to Datasets I and II. Left and right stereograms in each

subfigure indicate the s1- and s3-orientations by lower-hemisphere, equal-area projections, in which the clusters of square symbols represent significant stresses.

Stress ratio F is indicated by a gray scale. The method was applied with the combination number kfZ4 for the datasets. The enhance factor is chosen at eZ8 for the

datasets. See Yamaji (2000b) for the details of those parameters.
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matrices are combined into the matrix SK1
W SB. This is a 5!5

square matrix, because we deal with points in the five-

dimensional parameter space.

To evaluate and compare the results of clustering, a scalar

measure instead of the square matrix is required. The measure

is expected not to be affected by coordinate rotations in the

parameter space. A square matrix has various invariants.

Among those, the trace

J Z trace SK1
W SB

� �
(7)

is the simplest discrimination criterion. A good division has a

large J.
So as to search for the best clustering, we performed the

clustering procedure 200 times with a constant number of

clusters, k with 200 different configurations of initial cluster

enters, which were randomly distributed for each trial of the

200 runs (Fig. 2a). If a calculated J exceeds the maximum J of

previous trials, the optimal result is updated. As a result,

convergence of the optimal result was found in the clustering

(Fig. 2b).

3. Test

In order to test the above clustering technique, we analyzed

two artificial fault-slip data sets I and II generated with known



Fig. 4. Result of the present clustering technique of the reduced stress tensors deduced from Datasets I and II. Lower-hemisphere, equal-area projection. The number

of clusters, k, is 3 and 2, respectively, for Datasets I (a) and II (b). Crosses indicate the cluster centers. Members of the same cluster have the same symbols, i.e., solid

circles, gray triangles and open squares. In Dataset I, detected Stress states F, G, and H correspond to assumed Stress states A, B, and C, respectively. In Dataset II,

detected Stress states I and J correspond to assumed Stress states D and E, respectively.
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stresses. The fault planes were generated with random

orientations. Measurement errors and variations in natural

stress field were simulated by adding or subtracting random

angles values to the slip directions of the faults that were

predicted by the Wallace–Bott hypothesis (Wallace, 1951;

Bott, 1959). The values had a normal distribution with the

mean and the standard deviation at zero and 158, respectively.

The multiple inverse method (Yamaji, 2000b) was applied to

these datasets to yield reduced stress tensors.

Dataset I (Fig. 3a), which was used by Yamaji (2003a), had

99 faults. They were composed of three Subsets Ia, Ib and Ic to

which different stresses were assigned. The faults in Subset Ia
were activated by Stress A, which was an axial compression

(s3Zs2!s1), and had the s1-orientation of 0908/008. Subset

Ib was activated by Stress B which was a triaxial stress (FZ
0.5) with the s1- and s3-orientations of 0308/008 and 1208/508,

respectively. Subset Ic was activated by Stress C, which was an

axial tension (s3!s2Zs1) with the s3-orientation of
2408/508. The three stresses were almost equally separated by

stress differences of w1.4.

The multiple inverse method yielded three distinctive

clusters of output stresses from Dataset I (Fig. 3b). Two

hundred and three tensors were plotted on the stereograms.

Application of the clustering to the stresses with kZ3 resulted

in the identification of the clusters F, G, and H (Fig. 4a). The

center of the cluster F had FZ0.18 and the s1- and s3-

orientations of 2678/028 and 1728/668, respectively. The center

of the cluster G had a stress ratio of 0.53 and the s1- and s3-

orientations of 2198/108 and 1178/508, respectively. The center

of the cluster H had a stress ratio of 0.94 and the s1- and s3-

orientations of 0118/288 and 2358/538, respectively. Clusters F,

G, and H had 81, 81, and 41 tensors, respectively. We

associated Stresses F, G, and H with the assumed ones A, B,

and C. Stress differences between the assumed and recognized

stresses were 0.20, 0.24, and 0.15, respectively. Compared

with the theoretical maximum value of stress difference at 2
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(Orife and Lisle, 2003), these misfits are sufficiently small. We

concluded that the present technique was successful in

detecting the stresses.

Once stress tensors are classified as cluster centers, we can

estimate the spread of each cluster of sc. The recognized

clusters F, G, and H had values of sc at 0.43, 0.46, and 0.47,

respectively. Cluster F had the minimum value, indicating that

the stress represented by the center of Cluster F is the most

reliable.

Next, we tested the resolution of our clustering technique.

Dataset II consisted of two Subsets IId and IIe to which different

stresses were assigned. They are E–W- and WNW–ESE-

trending axial compressions, respectively (Fig. 3c). The angle

between s1-axes was 208 and the stress difference was 0.6.

Each subset had 30 faults.

Fig. 3d shows the result of the multiple inverse method

applied to Dataset II. One hundred and eighty-eight tensors

were plotted on the stereograms. Two clusters should appear on

each of the stereograms in the subfigure corresponding to the

assumed stresses. However, it is difficult to separate the two

clusters by visual inspection of the stereograms. Applying the

present clustering method to the stresses that are plotted on

the stereograms, we recognized Clusters I and J (Fig. 4b). The

center of Cluster I hadFZ0.05 and the s1- and s3-orientations

of 0928/028 and 3558/748, respectively. The sc was 0.58. The

center of Cluster J hadFZ0.03 and the s1- and s3-orientations

of 1088/018 and 178/228, respectively. The sc was 0.68. Clusters

I and J had 105 and 83 tensors, respectively. We associated

Stresses I and J with given ones D and E. The stress differences

between the detected and assumed ones were 0.09 and 0.08,

respectively. These misfits are small as in the case of Dataset I.

Once stresses are recognized as the cluster centers, the fault-

slip data can be sorted into homogeneous subsets according to

the compatibility of the data to the stresses. A fault-slip datum

is said to be compatible with a stress if the angular misfit of the

theoretical slip direction, which is calculated with theWallace–

Bott hypothesis (Wallace, 1951; Bott, 1959), from the observed

slip-direction is smaller than a threshold value, e.g. 10–208

(Angelier, 1979; Etchecopar et al., 1981; Nemcok and Lisle,

1995; Liesa and Lisle, 2004).
4. Outstanding problem

Deciding on the number of clusters is a difficult problem in

clustering (Duda et al., 2001). The k-means clustering requires

the number of clusters k known a priori (MacQueen, 1967).

Although many arguments have been made in information

science about this problem, it remains unsolved. The same

problem exists also in clustering on a hypersphere that this

study uses. Banerjee and Ghosh (2004) proposed the clustering

technique in a multi-dimensional hypersphere and called this

clustering ‘spherical k-means’. They specified the number of

clusters beforehand, and performed the clustering. It is the

future aim of our research to develop a method of determining

the optimal number of division, k, automatically.
5. Summary

The k-means clustering was used to objectively recognize

the clusters of stress tensors that the multiple inverse method

yielded. Applied to artificial heterogeneous data, the technique

was capable of the assumed stresses successfully. Automatic

determination of the number of clusters will require

development.
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